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Abstract 
 

The current research aimed to evaluate the effects of various concentrations of NaCl (0.0, 1.0, 2.0 and 4.0%) on the 

physiological and growth behaviors of the halophyte Zoysia macrostachya collected from the coastal wetland in east China 

from 2017 to 2018. The relative water content, antioxidase activities and osmotic adjustment substances contents in leaf were 

determined on days 4, 8, 12, 16, 20 and 24 of the experiment. Besides, Na
+
 and K

+
 concentrations in the root, shoot and leaf, 

together with the biomass, were measured at the end of experiment. Our results showed that relative water content decreased, 

while the H2O2 content elevated; in addition, the activities of peroxidase, catalase and superoxide dismutase were higher under 

salinity stress. On the other hand, the contents of proline, soluble sugar and betaine were increased with the increase in the 

salinity concentrations. As the NaCl concentrations increased, the Na
+
 concentrations in root, shoot and leaf increased 

significantly (P ≤ 0.05), K
+
 concentrations increased at first and then decreased, while K

+
/Na

+
 ratios were gradually decreased. 

Typically, the salinity levels of 1.0 and 2.0% improved root and aboveground growth, but that of 4.0% limited plant growth. 

These results indicated that the increase in antioxidase activities, the accumulation of osmotic adjustment substances, the 

absorption of a higher level of K
+
, the maintenance of greater K

+
 contents in leaf and shoot, and the lower Na

+
 transfer from 

root to shoot and leaf, might account for the mechanisms of salinity tolerance in Z. macrostachya. © 2020 Friends Science 

Publishers 
 

Keywords: Zoysia macrostachya; Salt stress; Relative water content; Antioxidase activities; Osmotic adjustment substances; 

Ion uptake; Growth traits 
 

Introduction 
 

Salinity, a leading environmental constraint, has affected the 

development and growth of plants worldwide (Parida and 

Das 2005; Gupta and Huang 2014). Salt stress can lead to 

metabolic and physiological disorders in plants through ion 

toxicity, osmotic stress, nutrient imbalance, and oxidative 

stress (OS), or the combinations of the above factors, which 

will result in damage to cells and reduce plant growth or 

even death (Shabala and Mackay 2011; Hamed et al. 2013; 

Flowers et al. 2015; Slama et al. 2015). During the 

evolution, plants developed numerous biochemical and 

physiological strategies to cope with stresses (Pastori and 

Foyer 2002), and the following strategies are included. (1) 

Accumulating the osmotic adjustment substances, such as 

the synthesis of soluble sugars, proline, betaine, glycine, 

together with other osmolytes for promoting the cellular 

osmotic balance in plants (Kishor et al. 1995; Garg et al. 

2002; Taji et al. 2002). (2) Ion-selective absorption and 

compartmentalization; in plants, ion uptake, as well as Cl
−
 

and Na
+
 ions compartmentalization mainly takes place in 

vacuoles to adjust osmosis, and the compatible solutes are 

also generated for adjusting osmotic potential (Nanjo et al. 

1999; Hong et al. 2000). (3) Scavenging of reactive oxygen 

species (ROS); typically, antioxidant enzymes, like catalase 

(CAT), superoxide dismutase (SOD), and peroxidase (POD), 

can scavenge the excessive ROS to protect the membrane 

integrity (Souid et al. 2016). 

According to the F.A.O. (2007), about 20% of total 

agricultural lands (over 900 million hectares) have been 

under salt stress, which takes up over 6% total land area in 

the world. As in China, about 37 million hectares of lands 

are subjected to primary as well as secondary salinization 

stress (Zhang et al. 2007). Growing salinity-tolerant plants 

has been recognized as an effective way for exploiting the 

saline land resources. However, the salt tolerance of some 

crops is poor, and some researchers suggest that growing the 

salinity-tolerant grasses can be an alternative way in such 

regions (Roy and Chakraborty 2014). Zoysia macrostachya, 

one of the perennial turfgrasses growing in warm season, is 

originated from China, Japan as well as Korean Peninsula, 

and it mainly grows on the salt-affected soil along the sea-
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bank of Shandong, Jiangsu and Zhejiang provinces in China. 

Z. macrostachya can rapidly spread through the rhizomes 

and stolons, thus forming the dense turf with a deep root 

system. Therefore, it can be used as the soil–conserving, 

dike-protecting and sand-fixing turf. Importantly, Z. 

macrostachya is an euhalophyte, which has potent tolerance 

to salinity, and is promising to be used in landscaping of the 

saline-alkali lands. However, Z. macrostachya has low 

turfgrass quality, which is thereby rarely used as ornamental 

turf. Compared with other Zosia grasses, Z. macrostachya is 

relatively less investigated, to date, the activities of 

antioxidant enzymes, contents of osmotic adjustment 

substances, ion intake, and the growth traits of Z. 

macrostachya under salt stress remain unclear. Thus, this 

work aimed to examine the role of salinity in the physiology 

as well as growth of Z. macrostachya, so as to identify the 

traits related to higher salinity tolerance. 

 

Materials and Methods 
 

Collection of plants and growth conditions 
 

Z. macrostachya was collected from the coastal wetland at 

about 45.0 Km east of Yancheng in Jiangsu province, was 

cut into fragments (5.0 cm in radius) and brought to our 

laboratory to grow in the plastic pots (20 cm × 30 cm) filled 

with washed sand. Each plant was watered at an interval of 

three days to reach the field capacity, and was irrigated 

weekly with 200 mL of the 1/2 Hoagland's nutrient solution 

before treatments. Each plant grew at the conditions of 

natural light, a photoperiod of 14/10 h, photosynthetic active 

radiation at 650–1500 mmol·m
-2

·s
-1

, daily minimum/ 

maximum air temperatures of 14°C/35°C, mean air 

temperature of about 26°C, and relative humidity of 80 ± 10% 

during the experiment. This research was carried out during 

the growing seasons in 2017 and repeated in 2018. 
 

NaCl treatments 
 

After 30 days of culture, plants were removed into the 

greenhouse to carry out four treatments, including (C) 

control (100% field capacity), (S1) 1.0% NaCl, (S2) 2.0% 

NaCl and (S3) 4.0% NaCl concentration treatment. Salt was 

incrementally increased by 0.5% every day to avoid the 

osmotic shock. On days 4, 8, 12, 16, 20 and 24 during the 

experiment, leaves were harvested to determine the relative 

water content (RWC), activities of antioxidant enzymes and 

contents of osmotic adjustment substances. On the 

completion of experiment, all plant samples were isolated as 

root, shoot and leaf to determine the ion content, root and 

aboveground dry biomass. 
 

RWC 
 

Ten leaves from plants of each pot were harvested to 

immediately determine their fresh weight (FW), followed 

by transfer into the deionized water in the Petri dishes for 4 

h in dark to restore their turgidity. Later, the excess water 

was removed, turgid weight (TW) was recorded, samples 

were subjected to 30 min of drying at 105°C and 48 h at 

80°C, respectively, so as to attain the dry weight (DW). 

Afterwards, RWC was computed according to the formula: 
 

RWC% = (FW−DW)/(TW−DW) × 100% 

 

Enzyme extractions and assays 

 

Enzymes were extracted at 4°C by the method proposed by 

Pereira et al. (2002). Briefly, 0.5 g fresh plant leaf samples 

were frozen using liquid nitrogen, followed by grinding 

using the ice-cold mortar and pestle, and extraction with the 

potassium phosphate buffer (100 mM, at pH=7.5) 

supplemented with 5% (w/v) insoluble polyvinylpyrrolidone 

(w/v, 1:3), 3 mM DL-Dithiothreitol, and 1 mM EDTA. 

Afterwards, the obtained homogenate was filtered using the 

four-layer cheesecloth, followed by 30 min of centrifugation 

at 14,000 × g to collect the supernatant, which was 

preserved as small aliquots under the temperature of − 80°C 

for POD, CAT, and SOD assays. Additionally, 

spectrophotometric analyses were performed using the 

spectrophotometer (Model 336001, Spectronic Instruments, 

U.S.A.). 

SOD activity assay was carried out through inhibiting 

the photochemical reduction of nitroblue tetrazolium (NBT) 

(Giannopolitis and Ries 1977). An enzyme unit in SOD 

activity was deemed as the enzyme amount necessary for 

inducing 50% suppression of NBT reduction rate measured 

at the wavelength of 560 nm. 

The activity of CAT was determined according to the 

method from Aebi (1984). In brief, 3 mL reaction solution 

was comprised of H2O2 (0.1 M), enzyme extract (20 μL), 

and phosphate buffer (0.15 M, at pH=7.8). Specifically, the 

activity of CAT was detected after reducing H2O2 at the 

wavelength of 240 nm. 

POD was measured using the substrate guaiacol 

(Kochba et al. 1977), and the elevation of absorbance was 

measured for every minute at the wavelength of 470 nm. 

One unit in POD activity was referred to as any alternation 

in the absorbance/min; meanwhile, the specific activity was 

regarded as the enzyme unit/mg soluble protein. 

 

Determination of the proline, betaine and soluble sugar 

content (SSC) levels 

 

0.2 g fresh leaf samples were collected and mixed with 

sulfosalicylic acid (10 mL, 3% w/v) to determine proline 

according to the 1.0 mL acid–ninhydrin method. Afterwards, 

the absorbance at 520 nm was measured by the 

spectrophotometer (Bates et al. 1973). 

SSC was determined according to Buysse and 

Merckxs (1993) method. Briefly, dry leaf powders (20 mg) 

were extracted for 15 min for 4 times using 20 mL ethanol 
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(90% v/v), and centrifuged for 10 min at 3000 × g to collect 

the supernatant. Then, all supernatants were combined to 

result in a final volume of 40 mL. Afterwards, 2 mL 

supernatant was extracted, followed by transfer to the glass 

tube, and the addition of 5 mL concentrated sulfuric acid 

and 1 mL phenol solution (18%). Later, the resultant 

mixture was sufficiently shaken, and the absorption at 490 

nm was read using the above-mentioned spectrophotometer. 

Betaine was detected according to Grieve and Grattan 

(1983) method through predicting the betaine-periodite 

complex. In brief, 0.5 g dry ground leaves were subjected to 

24 h of mechanical shaking at 25°C using 20 mL deionized 

water. Subsequently, the samples were filtered to collect the 

filtrates, which were then diluted with H2SO4 (1 mol·L
−1

) at 

the ratio of 1:1. Later, 0.5 mL aliquots were determined 

within the centrifuge tubes, followed by 1 h of cooling 

within the icy water and addition of 0.2 mL cold KI-I2 

reagent under gentle stirring. Then, the tubes were preserved 

for 16 h under 4°C prior to 15 min of centrifugation at 

10,000 × g under the temperature of 0°C. Afterwards, the 

resultant supernatant was collected with caution to measure 

the absorbance at 365 nm through the spectrophotometer at 

2 h later. Notably, the betaine reference standards (50–200 

μg·mL 
−1

) were prepared using H2SO4 (1 mol·L
 −1

). 
 

Measurement of the hydrogen peroxide (H2O2) level 
 

H2O2 level in leaf was measured based on the method 

proposed by Loreto and Velikova (2001). In brief, 0.5 g leaf 

sample was subjected to homogenization within the ice bath 

using 5 mL TCA (0.1% w/v), followed by 15 min of 

centrifugation of the obtained homogenate at 12,000 × g. 

Later, 0.5 mL supernatant was collected to mix with 1 mL 

potassium iodide (1 M, KI) and 0.5 mL potassium 

phosphate buffer (10 mM, at pH=7.0). Then, the absorbance 

of supernatant was determined at 390 nm, and H2O2 level 

was computed relative to the previously plotted standard 

calibration curve using H2O2 at various contents. 
 

Measurement of Na
+
 and K

+
 concentrations 

 

Root, shoot and leaf samples were ground to fine powders, 

followed by digestion using the HNO3 solution (0.5%) to 

extract the ions. Subsequently, the contents of K
+ 

and Na
+
 

were measured using the flame photometer (Corning, 

London and UK). 
 

Root and aboveground dry biomass 
 

The residual root, shoot and leaf were dried for 30 min at 

105°C, followed by 48 h of drying at 80°C to obtain their 

dry weights. The aboveground biomass represented the sum 

of dry weight of leaves and shoots. 
 

Statistical methods 
 

All experiments were performed under complete 

randomization condition, and were repeated for three times. 

Difference in data between 2017 and 2018 was not 

statistically significant, as a result, data collected at the 

sampling dates in these two years were combined, and the 

means were utilized in statistical analyses. The one-way 

ANOVA was used for data analysis by the S.A.S. software 

(S.A.S. Institute, Cary, NC, USA); in the meantime, the 

Duncan’s multiple range test was performed to compare the 

averages, and the significance level was set as P ≤ 0.05. 

 

Results 
 

RWC 

 

Throughout the experiment, leaf RWC gradually deceased 

under the stress conditions (Fig. 1), and a higher salinity 

level resulted in a greater decrease in RWC. Under 

treatment at 1.0% salinity concentration, RWC was 

remarkably reduced by 8.98% on the 16
th
 day compared 

with those in control plants; however, significant difference 

in RWC reduction appeared on the 8
th
 day and the 4

th
 day at 

2.0 and 4.0% salinity concentrations (P ≤ 0.05), respectively, 

which were reduced by 8.14 and 12.67%, respectively. At 

the end of experiment, the RWC under treatments at 1.0, 2.0 

and 4.0% salinity concentrations were declined by 11.24, 

31.59 and 63.18%, respectively. 

 

Antioxidant enzyme activities 

 

POD activity in the treated plants continued to increase 

under 1.0% salinity concentration, which was significantly 

increased (increased by 51.14%) compared with that in 

control plants from the 16
th
 day. At the 2.0 and 4.0% salinity 

concentrations (P ≤ 0.05), the POD activities were first 

increased and then decreased as the salinity stress prolonged, 

which peaked on the 16
th
 day and were increased by 385.76 

and 504.92% at two concentrations, respectively, compared 

with those in control plants. On the 24
th
 day, POD activity 

remarkably increased relative to that in control plants (Fig. 

2A). 

The activity of SOD was elevated from day 0 to day 

24 under three salinity concentrations. Under 1.0% salinity 

concentration, SOD activity was slightly increased, and 

difference in SOD activity was significant on day 24 

between the treated and the control plants (P ≤ 0.05). SOD 

activity was evidently elevated after 4 days under treatments 

at 2.0 and 4.0% salinity concentrations, and a higher NaCl 

concentration resulted in a higher SOD activity during the 

experiment (Fig. 2B). 

Under 1.0% salinity concentration, CAT activity was 

increased slightly from day 0 to day 24, and significant 

difference in CAT activity between the treated and the 

control plants were found from the 12
th
 day (P ≤ 0.05). 

Specifically, the CAT activity of the treated plants was 

increased by 7.75% relative to that in control plants upon 

experiment completion. Under 2.0% salinity concentration, 
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plant CAT activity was increased, which was higher than 

that under 1.0% salinity stress. CAT activity was first 

increased and then decreased under 4.0% salinity 

concentration, which peaked on the 16
th
 day and was 

increased by 75.06%. In addition, the CAT activity under 

4.0% salinity concentration was higher than those under 2.0 

and 1.0% concentrations during the experiment period (Fig. 

2C). 

 

Levels of osmotic adjustment substances 

 

Throughout the experimental period, no significant 

difference was observed in the proline level of control plants, 

but proline content varied depending on the different salinity 

concentrations. Proline content displayed no obvious 

difference from day 0 to day 16, but it markedly increased 

after the 16
th
 day under 1.0% salinity concentration 

compared with that in control plants. Specifically, the 

proline content increased by 44.00% on the 24
th
 day. By 

contrast, the proline content was risen steadily under 2.0% 

salinity concentration during the experiment. On the 24
th
 day, 

proline content was 18.35 mg·g
-1

, which was about 2-fold of 

that in control plants. For 4.0% salinity concentration, 

proline content was elevated from days 0–16, which was 

reduced after the 16
th
 day. On the 24

th
 day, the proline 

content at 4.0% salinity concentration was higher than those 

at 2.0 and 1.0% salinity concentrations (Fig. 3A). 

In our experiment, the SSC level was always stable 

within control plants. Although the SSC content increased 

under 1.0% salinity concentration, no significant difference 

was observed compared with the control plants, except for 

that on the 16
th
 day. In addition, the SSC contents kept 

increasing under 2.0 and 4.0% salinity concentrations as the 

salinity stress prolonged. On the 24
th
 day, the SSC contents 

were increased by 172.86 and 215.04%, respectively. 

Moreover, the SSC content under 4.0% salinity 

concentration was always higher than those under 2.0 and 

1.0% salinity concentrations (Fig. 3B). 

The betaine contents dramatically decreased on the 8
th
 

and 12
th
 days under 1.0% salinity concentration compared 

with those in control plants. Besides, betaine contents kept 

increasing under 2.0 and 4.0% salinity concentrations as the 

salinity stress prolonged, with the contents of 119.51 as well 

as 155.97 mg·g
-1

, respectively, which were increased by 

132.91 and 203.98% on the 24
th
 day, respectively. In 

addition, betaine content under 4.0% salinity concentration 

was always higher than those under the other two salinity 

concentrations (Fig. 3C). 

 

H2O2 content 

 

H2O2 contents in control plants and plants treated with 1.0% 

salinity concentration stress remained relatively constant 

during the experiment, and no significant difference was 

observed, except for that on the 24
th
 day. Under 2.0 and 4.0% 

salinity concentrations, H2O2 contents were greatly 

increased as the salinity stress prolonged, but the H2O2 

content under 4.0% salinity concentration was greater than 

that under 2.0% salinity concentration (Fig. 3D). 
 

Ion concentrations 
 

Concentrations of K
+ 
and Na

+
 in roots, shoots and leaves of Z. 

macrostachya are shown in Table 1. With the increase in 

NaCl concentration, Na
+
 concentrations in root, shoot and 

leaf largely increased, under 4.0% salinity concentration, 

Na+ concentrations were 2.43, 2.98 and 3.36 times those of 

control plants, respectively. Besides, Na
+
 concentrations in 

roots, shoots and leaves gradually decreased under the same 

salinity concentration. Changes in the K
+
 concentrations in 

roots, shoots and leaves were different from those in Na
+
 

concentrations, which first increased and then declined as the 

salinity level increased. Typically, the K
+
 concentrations in 

roots, shoots and leaves under 1.0% salinity concentration 

were increased by 17.59, 26.76 and 20.97%, respectively, 

compared with those in control plants; but the values were 

24.45, 44.99 and 39.61 under 2.0% salinity concentration, as 

well as ‒1.5, 11.27 and ‒10.58% under 4.0% salinity 

concentration. K
+
 concentrations in roots, shoots and leaves 

gradually increased under the same salinity level. 

K
+
/Na

+
 ratios in roots, leaves and shoots upon 

experiment completion are shown in Table 2. The K
+
/Na

+
 

ratios in control plants were 1.66, 2.87 and 4.40, 

respectively, while such values in treated plants decreased 

with the increase in salinity concentration. The K
+
/Na

+
 

ratios in shoots, leaves and roots at 4% salinity 

concentration decreased by 59.63, 62.71 and 73.41% 

compared with those in control plants, respectively. At the 

same salinity concentration, the K
+
/Na

+
 ratios in roots, 

shoots and leaves increased gradually; typically, those at 1.0, 

2.0 and 4.0% salinity concentrations in leaves were 1.55, 

1.43 and 1.60 times of those in roots, and were 1.38, 1.43 

and 1.09 times of those in shoots. 

 
 

Fig. 1: Changes in RWC during salt stress 
Note: The different letters in the same day suggest significant difference (P ≤ 0.05), 

the same below 
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Root and aboveground dry biomass 
 

Under 1.0 and 2.0% salinity concentrations, the root dry 

weights were evidently higher than that of control plants; 

however, that was markedly lower at 4.0% salinity 

concentration than that of control plants (Fig. 4A). 

Additionally, difference in the aboveground biomass 

between plants treated with 1.0% salinity concentration 

stress and control plants was not statistically significant, but 

the 2.0% salinity concentration apparently improved the 

growth of aboveground biomass, while the 4.0% salinity 

concentration limited shoot and leaf growth, and notably 

reduced the aboveground biomass (Fig. 4B). 

Table 1: Na+ and K+ concentrations in root, shoot and leaf of Z. macrostachya 

 
Salinity concentration Na+ concentrations (g·kg-1) K+ concentrations (g·kg-1) 

Root Shoot Leaf Root Shoot Leaf 

0.0% 6.40 ± 0.20 4.20 ± 0.10 3.50 ± 0.30 10.63 ± 0.15 12.07 ± 0.42 15.40 ± 1.11 
1.0% 8.43 ± 0.81 6.67 ± 0.23 5.87 ± 0.21 12.50 ± 0.10 15.30 ± 0.62 18.63 ± 0.85 

2.0% 10.98 ± 0.65 10.23 ± 0.25 8.77 ± 0.15 13.23 ± 0.21 17.50 ± 1.35 21.50 ± 0.36 

4.0% 15.53 ± 0.15 12.53 ± 0.15 11.77 ± 0.15 10.47 ± 0.12 13.43 ± 0.42 13.77 ± 0.61 

 

Table 2: K+/Na+ Ratios in root, shoot and leaf of Z. macrostachya 

 
Salinity Concentration Root K+/Na+ Ratio Shoot K+/Na+ Ratio Leaf  K+/Na+ Ratio 

0.0% 1.66 2.87 4.40 

1.0% 1.48 2.29 3.17 
2.0% 1.20 1.71 2.45 

4.0% 0.67 1.07 1.17 

 

 
 

Fig. 2: Changes in antioxidant enzyme activities during salt stress 
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Discussion 
 

The stress tolerating capacity in plant depends on several 

biochemical pathways, which can promote water acquisition 

and/or retention, remain cell membrane stability, and 

maintain ion homeostasis (Ashwani et al. 2016; Al-Maskri et 

al. 2010). RWC, a major creditable physiological index, can 

assess the salinity resistance for various genotypes 

(Hasheminasab et al. 2014). In our study, RWC decreased by 

salt stress throughout the experiment, but such effect was 

more pronounced in plants treated with 4.0% NaCl. Salinity 

is reported to decline the RWC for some turfgrass species, 

such as common bermudagrass (Cynodon dactylon [L.] Pers.) 

(Manuchehri and Salehi 2014), Iranian crested wheatgrass 

 
 

Fig. 3: Changes in osmotic adjustment substances and H2O2 content during salt stress 

 

 
 

Fig. 4: Root and aboveground dry biomass of Z. macrostachya at the end of experiment 
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(Agropyron cristatum L.) (Sheikh-Mohamadi et al. 2017) 

and tall fescue (Festuca arundinacea Schreb.) (Gao and Li 

2012). Our finding was in line with these results. 

Salinity stresses cause ROS production, while this 

subsequently promotes lipid peroxidation and increases the 

MDA content, which are the two indicators predicting 

oxidative damage in plants (Abbasi et al. 2007; Saruhan et 

al. 2012). H2O2 is one of the ROS, which is found to be 

increased within peroxisomes chloroplasts, as well as 

mitochondria responding to salt and drought stresses 

(Alscher et al. 2002; Pinheiro et al. 2004). According to our 

results, H2O2 content in the treated plants increased under 

different salinity concentrations, which indicated that the 

increased ROS resulted in severe injury to the crucial 

biomolecules, such as proteins, lipids, nucleic acids, and 

carbohydrates. To reduce the adverse effect of ROS, grasses 

will adapt to the antioxidant defence mechanisms, including 

the non-enzymatic and enzymatic mechanisms (Tahkokorpi 

et al. 2007). Specifically, the enzymatic antioxidant system 

is comprised of POD, CAT and SOD, which can remove 

H2O2 and superoxide in plants (Etemadi et al. 2015). 

Maintaining high activities of antioxidant enzymes increases 

the tolerance to salinity through enhancing the mechanisms 

to protect from OS (Jayakumar et al. 2008). Generally, salt 

tolerance has been identified to be associated with greater 

antioxidant enzyme activities of plants (Shalata et al. 2001). 

SOD has been identified to be the critical enzyme to keep 

the normal physiologic process and resist OS, which is 

achieved through the rapid conversion of O2
−
 to O2 as well 

as H2O2 (Quan et al. 2008). Our results suggested that, salt 

stress increased the activity of SOD in Z. macrostachya, 

indicating that ROS induced SOD activity in the case of salt 

stress, which thereby enhanced the ability of Z. 

macrostachya to scavenge O2
−
. Detoxification of H2O2 is 

mediated by CAT, a vital enzyme that can scavenge H2O2 

through the direct decomposition of H2O2 into H2O as well 

as O2 in glyoxisomes and peroxisomes (Mittler 2006). On 

the other hand, POD is a leading enzyme to remove H2O2 

from chloroplasts (Kyle et al. 1987), which can be activated 

under salt stress in plants to adapt to NaCl (Rahnama and 

Ebrahimzadeh 2005). In this study, salt stress resulted in 

higher activity of POD in Z. macrostachya confirmed the 

results of Hu et al. (2012). Therefore, increased POD, SOD 

and CAT activities might facilitate the possible antioxidant 

mechanisms in Z. macrostachya to resist salinity stress. 

To mitigate the negative effect of stress on the plant 

osmotic equilibrium, some osmotic adjustment substances, 

such as proline, sugar and betaine, are synthesized in plants 

in response to stress (Ingram and Bartels 1996; Ashraf and 

Foolad 2007). These compatible solutes can finally restore 

the homeostasis and detoxification of cells, thereby 

rendering cell survival in the case of stress (Miller et al. 

2010). Proline, one of the crucial osmolytes, can adjust 

osmosis in plants in the case of salinity-induced osmotic 

stresses, and free proline accumulation represents the 

general adaptation for mitigating abiotic stress severity 

within higher plants. At the same time, active proline 

accumulation has been recognized to be related to salinity 

tolerance among different types of plants (Mansour et al. 

2005). In our experiment, we found that salinity induced the 

synthesis of free proline in Z. macrostachya, which 

conformed to the remarks by Akram et al. (2006) as well as 

Li et al. (2018). The SSC content in plants depends on the 

balance between carbohydrate consumption and production 

(Qian and Fu 2005). SSC accumulation in grass tissues can 

serve as an approach to detect the physiological state of 

turfgrass under stressful condition (Fu and Dernoeden 2008). 

According to prior research, the increased SSC level can 

improve the tolerance to drought and salinity stresses in 

plants through adjusting osmosis and maintaining turgor 

within the growing sites in roots and leaves (Streeter et al. 

2001; Taji et al. 2002; Hameed and Ashraf 2008), which are 

consistent with our results. Betaine, a crucial determining 

factor of tolerance to salt stress (Zhang et al. 2009), 

participates in decreasing H2O2 content, boosting the 

antioxidant defense mechanism, and enhancing the 

tolerance to salt stress (Demiral and Turkan 2004; Banu et 

al. 2009). It has been suggested that betaine exerts a crucial 

role in the tolerance to salt stress (Grumet and Hanson 1986; 

Lutts and Bouharmont 1996; Liang et al. 2009). Our study 

showed that the betaine content in Z. macrostachya 

increased under various salinity concentrations. Therefore, 

proline, SSC and betaine accumulation within leaves might 

be related to salt tolerance in Z. macrostachya. 

In a saline environment, restricting Na
+ 

from entering 

the roots and limiting its transport to the overground parts of 

plants (shoots and leaves) have been recognized as the 

crucial mechanism to increase the salinity tolerance in plants 

(Colmer et al. 2005). But this mechanism cannot prevent 

excessive Na
+
 accumulation within roots, leaves and shoots 

in Z. macrostachya. Potassium nutrient, which represents a 

key factor in the development and growth of plants, has 

similar ionic radius to that of Na
+
, thus there is competitive 

absorption between K
+
 and Na

+
 ions in abiotic stress 

conditions. Therefore, the K
+
 absorption capacity and Na

+
 

transfer suppression (from roots to leaves) are of great 

importance to the salinity tolerance in plants (Guo et al. 

2016). Our study showed that treatments under lower salt 

concentrations (1.0 and 2.0%) increased K
+
 absorption and 

transportation, but treatment under higher salt concentration 

(4.0%) limited K
+
 absorption, without affecting K

+ 

transportation from roots to shoots as well as leaves. 

Moreover, K
+
/Na

+
 ratios in roots, shoots and leaves also 

proved that salinity stress improved K
+
 absorption and 

limited Na
+
 transportation from roots to shoots and leaves. 

Thus, it was suggested in this study that, K
+
 uptake and Na

+
 

transfer inhibition from roots to shoots and leaves were the 

crucial mechanisms in the salt tolerance in Z. macrostachya. 

Salt stress severity would impact biometric response, 

affect plant growth, and markedly change the biomass 

(Pompeiano et al. 2016). Data from the present experiment 

showed that 1.0 and 2.0% salinity concentration treatments 
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improved the root and aboveground growth of Z. 

macrostachya, but the biomass of Z. macrostachya 

decreased under 4.0% salinity concentration. Such finding 

was ascribed to prior transient impact of osmotic stress 

following salinity tress. It has been reported that, 

intermediate salinity stress can boost root growth in 

bermudagrass, which can be a kind of adaptation to salt 

stress, finally leading to greater nutrient and water uptake 

levels (Marcum and Murdoch 1990). 

 

Conclusion 
 

According to our results, salt stress can reduce the RWC 

level, while increase the H2O2 content. In addition, the 

increased SOD, CAT and POD activities can improve the 

abilities of Z. macrostachya to scavenge ROS, accumulate 

proline, SSC and betaine, and alleviate the osmotic stress 

induced by salt stress. At the same time, Z. macrostachya 

can take up more K
+
 and inhibit the transfer of Na

+
, thus 

improving the salt tolerance of Z. macrostachya. Under the 

salinity concentrations of 1.0 and 2.0%, the root dry weight 

and aboveground biomass in Z. macrostachya increase, but 

those are reduced under treatment at 4.0% salinity 

concentration, indicating that Z. macrostachya can endure 

the 2.0% salinity concentration stress. 
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